“A Computer Animated Hand” Added to National Film Registry

40 Year Old 3D Computer Graphics (1972) from Robby Ingebretsen on Vimeo.

Recently, Ed Catmull and Fred Parke’s computer animated version of Catmull’s left hand done at the University of Utah was added to the National Film Registry. (For some reason, Parke is not given any credit in the Registry’s announcement.) (The film embedded above, I should note, also includes footage of an artificial heart valve and an unidentified computer animated face.) Needless to say, the film proved to be a landmark in the development of computer animation and was later incorporated in Richard T. Heffron’s Futureworld (1976).

Ed Catmull's hand in Futureworld

Interestingly, another computer animated left hand showed up a few years later in Michael Crichton’s Looker (1981), when the Susan Dey character’s naked body is scanned into a computer; there’s no particular reason to include the hand, since one would think the viewer’s prurient interest would lie elsewhere .


Rebecca Allen, who worked at the New York Institute of Technology after Catmull left there for Lucasfilm in 1979, mentioned to me that Catmull left behind a digital version of his wife’s body, which Allen used for her own projects at NYIT. Thus, my question is was the hand in Looker a reworked version of Catmull’s or someone  else’s? Ah, such are the mysteries of film history.

Are New Oscar Rules for Mocap a Power Grab?

I’m writing this from Edinburgh, Scotland, where my wife and I have been enjoying a really wonderful Society for Animation Studies conference. A full report will follow when I get back home, but I can’t help responding to the Motion Picture Academy’s new rules for defining what is animation (see press release here), which states in part that,

a sentence regarding motion capture was added to clarify the definition of an animated film. The language now reads: “An animated feature film is defined as a motion picture with a running time of greater than 40 minutes, in which movement and characters’ performances are created using a frame-by-frame technique. Motion capture by itself is not an animation technique. In addition, a significant number of the major characters must be animated, and animation must figure in no less than 75 percent of the picture’s running time.”

It was mentioned during one of the conference’s many discussions of motion capture and drew some incredulous responses from the packed room (the person reporting it wasn’t sure if it was correct), but a comment by Sheridan Institute of Technology’s Tony Tarantini made around this time about James Cameron’s assertion that there’s no animation in Avatar is worth reporting. He basically felt that at a time when animation is becoming the dominant mode of production, Cameron is try to take it [the field] away from animators.

In the paper my wife Vickie and I gave yesterday, we discussed how live-action directors, like Cameron, liked motion capture because it enabled them to do animation in a way similar to the way they film live-action (i.e., they direct actors instead of animators). For whatever reason, he does not want to see himself as an animation filmmaker and I suspect the new rules regarding motion capture were added in part to assuage people like him; it would also please Pixar, DreamWorks Animation and Blue Sky, as it would reduce possible future Oscar competition. (Needless to say, I feel motion capture is animation.)

In a discussion about the new rules at Cartoon Brew, a number of people felt that motion capture films could still be considered animation if the data was finished by animators frame-by-frame, while Ryan McCulloch asked whether this would disqualify Happy Feet, which won the Oscar for Best Animated Feature several years ago (I believe it was the same year that another mocap film, Monster House was also nominated)? And the ever sane Floyd Norman said, “This is only going to get crazier.”

Deneroff’s Law … of Filmmaking and Everything Else

How to Train Your Dragon

After seeing How to Train Your Dragon and The Secret of Kells back to back, I noticed that both films finished with rather elaborate and visually complex climaxes. Such sequences have become commonplace in animated films these days, and can be seen in movies ranging from Astro Boy to  Shrek Forever After, a trend that seems to have been  facilitated by the introduction of digital technologies. It is a development that can most easily be explained by what I call (for lack of a better term) Deneroff’s Law, which is admittedly a variation of Parkinson’s Law and applies to both pre- and post-digital animation and live-action filmmaking.

The Secret of Kells

In 1958, C. Northcote Parkinson, famously stated in Parkinson’s Law: The Pursuit of Progress, that, “Work expands so as to fill the time available for its completion.” And Deneroff’s Law basically states: Given more powerful and complex tools, filmmakers will inevitably use them to make more complex films.”

This rather simplistic observation is by no means original and in fact was inspired by a comment John Lasseter made during a phone interview about Toy Story 2. If I remember correctly, he said something like when presented with a computer 10 times more powerful, rather than using the added power to produce animation 10 times quicker, animators will usually opt to make their animation 10 times more complex and expensive.

I then noticed something similar in Michael Barrier’s Hollywood Cartoons: American Animation in its Golden Age that

When Disney ordered the switch to rough animation [around 1932], that procedure made it possible to pass down much more work to the lowest—and lowest-paying rungs—and so greatly increase the animators’ output.

In fact … everything indicates that the animators’  footage actually declined sharply as they delegated more work. Although the Disney studio’s staff more than tripled between 1930 and 1932, the number of films changed hardly at all. In 1930, the studio completed nineteen cartoons; in 1931, twenty-two; and in 1932, twenty-two again. … As Disney pursued an ever more refined division of labor, breaking the work into smaller and smaller components, each worker’s output did not rise—as could be expected in a normal manufacturing operation—but fell. (104)

In other words, Disney expanded his staff in the early 1930s for some of the same reasons that companies like Pixar or Weta Digital will add additional computing power. I would also, for instance,  argue that Willis O’Brien, Ub Iwerks, Max Fleischer and Walt Disney adopted the multiplane camera (first developed in Europe by Lotte Reiniger and Berthold Bartosch) in the 1930s for some of the same reasons. (See my earlier post on multiplane technologies here.)

For O’Brien, the multiplane setup he devised for King Kong enabled him to create imagery far more complex than he could previously do using traditional stop motion techniques, as well as more credibly blend it in with live action than was possible with his earlier work on The Lost World.

For Iwerks, Fleischer and Disney, their multiplane systems similarly enabled them to expand beyond the limits imposed by traditional cel animation technology. Up until the introduction of the multiplane camera, drawn animation was constricted by the use of 12 field animation paper (10½” x 13½”), though Disney termporarily trumped his rivals by using 16 field paper (13½” x 16½”), which was over 50% bigger, thus allowing for more detailed drawings.

For instance, the following image from Fleischer’s Popeye the Sailor Meets Sindbad the Sailor (Dave Fleischer/Willard Bowsky, 1936) in which Sindbad’s Roc is about the fly off to kidnap Olive Oyl, was done as a traditional cel setup, though possibly using 16 field paper.

Popeye the Sailor Meets Sindbad the Sailor

Now compare it with a frame from the next shot using Fleischer’s Stereoptical Process which used three-dimensional instead of painted backgrounds that resulted in a sharper sense of perspective and detail.

Popeye the Sailor Meets Sindbad the Sailor

But with the introduction of digital ink and paint, multiplane effects were much easier to implement and also allowed the introduction of computer animation into the mix. But in accordance with Deneroff’s Law, one could point to the ballroom scene in Gary Trousdale and Kirk Wise’s Beauty and the Beast as a way of using technology to increase the scene’s complexity.

Beauty and the Beast (1991)

As time went on and digital imagery became more prevalent, so did the complexity of what passed for traditional drawn animation, as seen in this shot from the climax of Ron Clements and John Musker’s Treasure Planet.

Treasure Planet

The same effect could also be seen in live-action movies. Once upon a time, studios could boast of films with huge sets and cast of thousands, and actually mean it, as in this recreation of ancient Babylon in D.W. Griffith’s Intolerance.


Visual effects could substitute to a certain extent, but were limited by pre-digital technology (though not as limited as those available for traditional drawn animation). The following shot from Stanley Kubrick’s widescreen epic, 2001: A Space Odyssey, while perhaps breathtaking in its splendor, is nevertheless rather static.

2001: A Space Odyssey

George Lucas’ Star Wars (Episode 4: A New Hope) pushed the technology a bit further and got more dynamic results, creating a greater sense of depth and detail, as seen in the film’s opening shot.

Star Wars IV A New Hope5

With digital technology, you could create vast vistas and populate them with both people and/or creatures, as seen in the scene where Forrest Gump addresses an anti-Vietnam War rally on the Mall in Washington, D.C. in Robert Zemeckis’ Forrest Gump (the size of the crowd was grossly inflated) …

Forrest Gump

or in this scene from Paul Verhoeven’s Starship Troopers populated by an endless numbers of alien insects.

Starship Troopers 01

Of course, the development of more powerful digital technologies need not always lead to increased visual complexity, but clearly the temptation is there.

(By the way, could the increased number of shots in movies in recent years be related to the introduction of such non-linear editing systems such as The Avid?)